from glob import glob
import logging
import ycm_core
+import difflib
BASE_FLAGS = [
'-Wall',
]
-# Implementation taken from
-# https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python
-def levenshtein(s, t):
- ''' From Wikipedia article; Iterative with two matrix rows. '''
- if s == t: return 0
- elif len(s) == 0: return len(t)
- elif len(t) == 0: return len(s)
- v0 = [None] * (len(t) + 1)
- v1 = [None] * (len(t) + 1)
- for i in range(len(v0)):
- v0[i] = i
- for i in range(len(s)):
- v1[0] = i + 1
- for j in range(len(t)):
- cost = 0 if s[i] == t[j] else 1
- v1[j + 1] = min(v1[j] + 1, v0[j + 1] + 1, v0[j] + cost)
- for j in range(len(v0)):
- v0[j] = v1[j]
-
- return v1[len(t)]
+def similarity_ratio(s, t):
+ return difflib.SequenceMatcher(a=s.lower(), b=t.lower()).ratio()
+
def generate_qt_flags():
flags = ['-isystem', '/usr/include/qt/']
logging.info("Trying to find some file close to: " + filename)
db = json.load(open(dbpath))
best_filename = ''
- best_distance = 1 << 31
+ best_ratio = 0
for entry in db:
- entry_filename = os.path.normpath(
- os.path.join(entry["directory"], entry["file"]))
- distance = levenshtein(str(filename), str(entry_filename))
- if distance < best_distance:
+ entry_filename = os.path.normpath(os.path.join(entry["directory"],
+ entry["file"]))
+ ratio = similarity_ratio(str(filename), str(entry_filename))
+ if ratio > best_ratio:
best_filename = entry_filename
- best_distance = distance
+ best_ratio = ratio
return best_filename
def ok_compilation_info(info):