-# Implementation taken from
-# https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python
-def levenshtein(s, t):
- ''' From Wikipedia article; Iterative with two matrix rows. '''
- if s == t: return 0
- elif len(s) == 0: return len(t)
- elif len(t) == 0: return len(s)
- v0 = [None] * (len(t) + 1)
- v1 = [None] * (len(t) + 1)
- for i in range(len(v0)):
- v0[i] = i
- for i in range(len(s)):
- v1[0] = i + 1
- for j in range(len(t)):
- cost = 0 if s[i] == t[j] else 1
- v1[j + 1] = min(v1[j] + 1, v0[j + 1] + 1, v0[j] + cost)
- for j in range(len(v0)):
- v0[j] = v1[j]
-
- return v1[len(t)]
+def similarity_ratio(s, t):
+ return difflib.SequenceMatcher(a=s.lower(), b=t.lower()).ratio()
+